设 y=f(x) 的反函数为 x=g(y),已知
g'(y) = 1/f'(x),
则
g"(y) = (d/dy)g'(y)
= (d/dx)[1/f'(x)]*(dx/dy)
= {-f'(x)/[f"(x)]^2}*[1/f'(x)]
= -f'(x)/[f"(x)]^3,
就是.
设 y=f(x) 的反函数为 x=g(y),已知
g'(y) = 1/f'(x),
则
g"(y) = (d/dy)g'(y)
= (d/dx)[1/f'(x)]*(dx/dy)
= {-f'(x)/[f"(x)]^2}*[1/f'(x)]
= -f'(x)/[f"(x)]^3,
就是.