w=2z-3+4i
=2(x+yi)-3+4i
=2x+2yi-3+4i
=(2x-3)+(2y+4)i
|w|^2=4x^2-12x+9+4y^2+16y+16
=-12x+16y+29
=4(-3x+4y)+29
x^2+y^2=1
求-3x+4y极限
设-3x+4y=t
y=0.75x+t/4
数形结合.
t=±5
|w|^2=>4*5+29=49
=>4*(-5)+29=9
所以,|w|的取值范围是.[3,7]
A
w=2z-3+4i
=2(x+yi)-3+4i
=2x+2yi-3+4i
=(2x-3)+(2y+4)i
|w|^2=4x^2-12x+9+4y^2+16y+16
=-12x+16y+29
=4(-3x+4y)+29
x^2+y^2=1
求-3x+4y极限
设-3x+4y=t
y=0.75x+t/4
数形结合.
t=±5
|w|^2=>4*5+29=49
=>4*(-5)+29=9
所以,|w|的取值范围是.[3,7]
A