(1)取a= b=0由已知f(a+b)=f(a)•f(b)得f(0)=f(0)•f(0),又f(0)≠0,两边同除以f(0)得f(0)=1.
(2)取a=x,b=-x,则a+b=0,由已知f(a+b)=f(a)•f(b)得f(x)•f(-x)=f(0)=1,而x与-x互为相反数,若x≠0,则x与-x必然一正一负,又当x>0时.f(x)>1,所以,当x0,由(2)对任意的x>0恒有f(x)>1知f(a-b)>1,又由f(a)•f(-a)=f(0)=1知f(b)与f(-b) 互为倒数,所以f(a) / f(b) = f(a) f(-b) = f(a-b) >1,且f(b) >0,所以f(a) > f(b),即f(x)是R上的增函数.
(4)若f(x)*f(2x-5)>1,则由已知f(a+b)=f(a)•f(b)得f(x+2x-5)>1= f(0),又f(x)是R上的增函数,所以3x-5>0,即x>5/3