圆x^+y^-x+2y=0,即(x-1/2)^+(y+1)^=5/4,
设圆心A(1/2,-1)关于直线l:x-y+1=0的对称点为A'(x,y),则
l垂直平分AA',
∴(y+1)/(x-1/2)=-1,
(1/2+x)/2-(y-1)/2+1=0,
化简得y=-x-1/2,
x-y+7/2=0,
解得x=-2,y=3/2.
∴圆A':(x+2)^+(y-3/2)^=5/4,为所求.
圆x^+y^-x+2y=0,即(x-1/2)^+(y+1)^=5/4,
设圆心A(1/2,-1)关于直线l:x-y+1=0的对称点为A'(x,y),则
l垂直平分AA',
∴(y+1)/(x-1/2)=-1,
(1/2+x)/2-(y-1)/2+1=0,
化简得y=-x-1/2,
x-y+7/2=0,
解得x=-2,y=3/2.
∴圆A':(x+2)^+(y-3/2)^=5/4,为所求.