1.求幂级数的收敛域:∑{(X^n)/[(2^n)*n!] }
p=lim(n趋于无穷大)[(2^n)*n!]/[(2^(n+1))*(n+1)!]=1/2(n+1)=0
所以收敛半径R=1/p=无穷大,所以收敛域为(-无穷,+无穷)
2.求级数在收敛区间的和函数:
(1) ∑[X^(4n+1)]/(4n+1) ,(-1
1.求幂级数的收敛域:∑{(X^n)/[(2^n)*n!] }
p=lim(n趋于无穷大)[(2^n)*n!]/[(2^(n+1))*(n+1)!]=1/2(n+1)=0
所以收敛半径R=1/p=无穷大,所以收敛域为(-无穷,+无穷)
2.求级数在收敛区间的和函数:
(1) ∑[X^(4n+1)]/(4n+1) ,(-1