证明:如图,连接BD,DL,DK
∵AB=BC,CD=DA,
∴△ABD≌△CBD,
∴∠A=∠C,
∵BK=2AK,BL=2CL,
∴AK=CL,
∴△ADK≌△CDL,
∴DK=DL,∠ADK=∠CDL,
∴∠NDL=∠ADC-∠ADK,∠KDM=∠ADC-∠CDL,
即∠NDL=∠KDM,
∴△DKM≌△DLN,
∴KM=LN.
证明:如图,连接BD,DL,DK
∵AB=BC,CD=DA,
∴△ABD≌△CBD,
∴∠A=∠C,
∵BK=2AK,BL=2CL,
∴AK=CL,
∴△ADK≌△CDL,
∴DK=DL,∠ADK=∠CDL,
∴∠NDL=∠ADC-∠ADK,∠KDM=∠ADC-∠CDL,
即∠NDL=∠KDM,
∴△DKM≌△DLN,
∴KM=LN.