第一章 有理数
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number).
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”).
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction).
整数和分数统称有理数(rational number).
通常用一条直线上的点表示数,这条直线叫数轴(number axis).
数轴三要素:原点、正方向、单位长度.
在直线上任取一个点表示数0,这个点叫做原点(origin).
只有符号不同的两个数叫做互为相反数(opposite number).(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|.
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.两个负数,绝对值大的反而小.
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加.
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.
3.一个数同0相加,仍得这个数.
有理数减法法则:减去一个数,等于加这个数的相反数.
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.
乘积是1的两个数互为倒数.
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.
两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0. mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power).在a的n次方中,a叫做底数(base number),n叫做指数(exponent).
负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何次幂都是0.
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法.
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit).
第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式.
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown).
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution).
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等.
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.
2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项.
第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid).包围着体的是面(surface).
3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短).
连接两点间的线段的长度,叫做这两点的距离.
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角.
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角.
等角(同角)的补角相等.
等角(同角)的余角相等.
第四章 数据的收集与整理
收集、整理、描述和分析数据是数据处理的基本过程.
基本是这些,其他需要自己运用知识答题!