. CF交BE于M
BE⊥AC,CF⊥AB
所以∠MEC=∠MFB=90
又因为∠FMB=∠EMC,所以∠ABP=∠ACQ
在△ABP和△QCA中
AB=CQ,∠ABP=∠ACQ,BP=AC
所以△ABP≌△CAQ.因此∠Q=∠BAP
因为AB⊥CQ,所以∠Q+∠QAB=90
因此∠BAP+∠QAB=90
所以AP⊥AQ
. CF交BE于M
BE⊥AC,CF⊥AB
所以∠MEC=∠MFB=90
又因为∠FMB=∠EMC,所以∠ABP=∠ACQ
在△ABP和△QCA中
AB=CQ,∠ABP=∠ACQ,BP=AC
所以△ABP≌△CAQ.因此∠Q=∠BAP
因为AB⊥CQ,所以∠Q+∠QAB=90
因此∠BAP+∠QAB=90
所以AP⊥AQ