解题思路:先根据三角形内角和定理求出∠B的度数,再由图形翻折变换的性质得出∠CB′D的度数,再由三角形外角的性质即可得出结论.
∵在Rt△ACB中,∠ACB=90°,∠A=25°,
∴∠B=90°-25°=65°,
∵△CDB′由△CDB反折而成,
∴∠CB′D=∠B=65°,
∵∠CB′D是△AB′D的外角,
∴∠ADB′=∠CB′D-∠A=65°-25°=40°.
故选D.
点评:
本题考点: 翻折变换(折叠问题).
考点点评: 本题考查的是图形的翻折变换及三角形外角的性质,熟知图形反折不变性的性质是解答此题的关键.