设△ABC的内角A,B,C的对边长分别为a,b,c,已知a,b,c成等比数列

1个回答

  • 1)要证a^2+b^2+c^2>(a-b+c)^2

    只需证a^2+b^2+c^2>a^2+b^2+c^2-(2ab+2bc-2ac)

    只需证2ab+2bc-2ac>0,ab+bc-ac>0

    因为b^2=ac 所以只需证b(a+c)-b^2>0

    只需证b(a+c-b)>0

    只需证a+c-b>0 (三角形两边之和大于第三边)显然成立

    所以a^2+b^2+c^2>(a-b+c)^2成立

    2) ccos (A-C) + cos B = 3/2

    所以 cos(A-C) + cos(π - A - C) = 3/2

    cos(A-C) + cos(π - A - C) = cos(A - C ) - cos(A + C)

    = cosAcosC + sinAsinC - cosAcosC + sinAsinC = 2sinAsinC = 3/2

    所以 sinAsinC = 3/4

    正弦定理

    a/sinA = b/sinB =c/sinC,而b^2 = ac,即 b/a = c/b

    所以 sinB/sinA = sinC/sinB,所以 sinB ^2 = sinAsinc

    所以sinB^2 = 3/4,sinB = 根号3/2,B=60°或120°

    但是,如果 B=60°,则cosB = -1/2

    带入 cos(A-C)+cosB=3/2,cos(A-C) = 2,矛盾,所以舍去这个值.