关于函数极限的局部有界性为什么函数有极限才有局部有界性呢,没有极限的函数,在某个邻域内,也是有界的呀

1个回答

  • 局部有界和函数在某点有极限是两个不同的概念,只是说,如果函数在某一点极限存在,那么这个函数就在这个点的某个空心δ邻域内是有界的,也就是说函数局部有界.并没有说局部有界一定极限存在的.最简单的例子就是狄利克莱函数,D(x)=1(如果x是有理数) D(x)=0(如果x是无理数),在[0,1]区间内是有界的,但是对区间内的任意的a,当x趋于a时,极限是不存在的.