已知圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,即圆心在直线x+2y=0上
所以,设圆心为(2a,-a),R²=(2a-2)²+(-a-3)²
又知道与直线x-y+1=0相交的弦长为2√2
所以,圆心到直线l得距离d=|3a+1|/√2=√(R²-2)
经转化,得(a-7)(a-3)=0
所以,a=3或7
经检验成立
故,圆方程为(x-6)²+(y+3)²=52或(x-14)²+(y+7)²=244
已知圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,即圆心在直线x+2y=0上
所以,设圆心为(2a,-a),R²=(2a-2)²+(-a-3)²
又知道与直线x-y+1=0相交的弦长为2√2
所以,圆心到直线l得距离d=|3a+1|/√2=√(R²-2)
经转化,得(a-7)(a-3)=0
所以,a=3或7
经检验成立
故,圆方程为(x-6)²+(y+3)²=52或(x-14)²+(y+7)²=244