x=t^2+t y=ln(1+t) 求dy/dx
1个回答
y=ln(1+t)
t=e^y-1 x=e^(2y)-e^y 两边同时对x求导得
dy/dx=1/(2e^(2y)-e^y )=1/(2(1+t)^2-1+t)=1/(2t^2+3t+1)
相关问题
设x=ln(1+t²) y=t-arctant 求dy/dx d²y/dx²
x=(t^2-2)\(t+1) y=(2t)\(t+1) 求dy\dx
x=2t+cost y=t+e^t 求dy/dx
(x-y)d(ln(x-y))为什么等于dx-dy?看不懂T^T!
设x=e^-t y=e^-2t 求dy/dx
2,y=f(x,t) t=t(x,y)由F(x,y,t)=0确定,求dy/dx
数学参数的dy/dx的计算x=2√t,y=5t+4用dy/dt/dx/dt求.求dy/dx,答案是5√t
请高手赐教:设由参数方程:x=t-arctant;y=ln(1+t^2) 确定y是x的函数,求dy/dx.
参数方程求导x=f(t)-派y=f(e^3t-1) 求dy/dx t=0 d^2y/dX^2 t=0
已知x=t²,y=4t²,求dy/dx,