因为a,b,c均为正数,由基本不等式得a2+b2≥2abb2+c2≥2bcc2+a2≥2ac
所以a2+b2+c2≥ab+bc+ac①
同理1a2+1b2+1c2≥1ab+1bc+1ac②(6分)
故a2+b2+c2+(1a+1b+1c)2③
≥ab+bc+ac+31ab+31bc+31ac
≥63所以原不等式成立.(8分)
当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.
即当且仅当a=b=c=314时,原式等号成立.(10分)