先由(x+1)^n=[2+(x-1)]^n,得a2=C(2,n)•2^(n-2)=n(n-1)•2^(n-3),
所以bn=n(n-1),从而Tn=b2+b3+b4+…+bn=1×2+2×3+3×4+…+(n-1)n,
最后,用数学归纳法证明:
①n=2时,T2=b2=1×2=2×(2+1)×(2-1)/3,命题成立.
②假设当n=k(k≥2,k∈N*)时,命题成立,即
Tk=b2+b3+b4+…+bk=1×2+2×3+3×4+…+(k-1)k=k×(k+1)×(k-1)/3,
则当n=k+1时,
T(k+1)=b2+b3+b4+…+bk+b(k+1)=1×2+2×3+3×4+…+(k-1)k+k(k+1)=k×(k+1)×(k-1)/3+k(k+1)
=k(k+1)(k+2)/3=(k+1)[(k+1)+1][(k+1)-1]/3,
由此知,当n=k+1时,命题也成立.
综上,知Tn=n×(n+1)×(n-1)/3对一切n≥2,n∈N*都成立.