a²+b²=(sinβ+sin2β)²+(cosβ+cos2β)²=2+2(sinβsin2β+cosβcos2β)=2+2cos(2β-β)=2+2cosβ
(a²+b²)(a²+b²-3)=(2+2cosβ)(2+2cosβ-3)=(2+2cosβ)(2cosβ-1)=4cosβ-2+4cos²β-2cosβ
=2(cosβ+2cos²β-1)=2(cosβ+cos2β)=2
a²+b²=(sinβ+sin2β)²+(cosβ+cos2β)²=2+2(sinβsin2β+cosβcos2β)=2+2cos(2β-β)=2+2cosβ
(a²+b²)(a²+b²-3)=(2+2cosβ)(2+2cosβ-3)=(2+2cosβ)(2cosβ-1)=4cosβ-2+4cos²β-2cosβ
=2(cosβ+2cos²β-1)=2(cosβ+cos2β)=2