f(x)=A(sin(wx+φ))^2=-(A/2)cos(2wx+2φ)-1因为y=f(x)的最大值为2,A>0
所以cos(2wx+2φ)=-1,A=6,图像相邻两对称轴间的距离为2周期为4,w>0,w
=π/4,
过点(1,2),所以f(1)=A(sin(w+φ))^2=-(A/2)cos(2w+2φ)-1=2,所以
cos(2w+2φ)=-1,0
f(x)=A(sin(wx+φ))^2=-(A/2)cos(2wx+2φ)-1因为y=f(x)的最大值为2,A>0
所以cos(2wx+2φ)=-1,A=6,图像相邻两对称轴间的距离为2周期为4,w>0,w
=π/4,
过点(1,2),所以f(1)=A(sin(w+φ))^2=-(A/2)cos(2w+2φ)-1=2,所以
cos(2w+2φ)=-1,0