实数a,b,c是图像连续不断的函数f(x)定义域中的三个数,且满足a<b<c,f(a)f(b)<0,f(b)f(c)<0

2个回答

  • 这道题当然是选择D啦.

    是这样解释的.因为整个函数在定义域内是连续的.因为f(a)f(b)<0,所以两个数必然是异号的,一个大于0,一个小于0,所以说他们之间一定穿过了x轴一次.同理可得b.c之间也是至少穿过了x轴一次,有一个解.因为其实还可以细分,所以你能判断的是只有两个解.

    所以答案是至少有两个解.

    不懂再问吧,

    这可不是像上面说的有可能与x轴相切一下,再穿过.就是有可能一个区间同时穿过去两三次.

    因为a,b就是一个区间的两个端点吗,所以中间你可以随便画.

    我知道你有可能想选C是吧,0也是偶数哦.所以C是错的.