已知数列{an}是公比大于1的等比数列,对任意的n∈N*有,an+1=a1+a2+...+an-1+5/2an+1/2

1个回答

  • an=a1.q^(n-1)

    a(n+1)=a1+a2+...+a(n-1)+(5/2)an+1/2

    n=1,

    a2=(5/2)a1+1/2

    a1q =(5/2)a1+1/2 (1)

    n=2,

    a3=a1+(5/2)a2+1/2

    a1q^2=a1+(5/2)a1q+1/2 (2)

    (2)-(1)

    q(q-1) =-(3/2) +(5/2)q

    2q^2-7q+3=0

    (2q-1)(q-3)=0

    q=3 (q>1)

    from (1)

    a1q =(5/2)a1+1/2

    3a1=(5/2)a1+1/2

    a1=1

    ie

    an= 3^(n-1)

    (2)

    bn=b1+(n-1)d

    bn=(1/n)[ log(a1)+log(a2)+...+log(an)+log(t) ]

    =(1/n)[ n(n-1)/2 +log(t) ]

    n=1,

    b1 =log(t) (3)

    n=2,

    b2=(1/2)[ 1 +log(t) ]

    b1+d =(1/2)[ 1 +log(t) ] (4)

    (4)-(3)

    d= (1/2)[ 1 -log(t) ]

    n=3,

    b3=(1/3)[ 3 +log(t) ]

    b1+2d=(1/3)[ 3 +log(t) ] (5)

    (5)-(4)

    d = 1/2 -(1/6)log(t)

    (1/2)[ 1 -log(t) ] =1/2 -(1/6)log(t)

    t=1

    d=1/2

    b1=0

    bn= (n-1)/2