梯形ABCD中,AD//BC,E是腰AB的中点,DE⊥CE,求证:AD+BC=CD
1个回答
证明:延长CB DE交与点M
∵AD//BC
∴∠A=∠ABM
∵∠AEM=∠MEB AE=EB
∴△AED≌△BEM
∴DE=EM MB=AD
∵DE⊥CE
∴CM=DC
∴AD+BC=CD
相关问题
梯形ABCD中,AD‖BC,E为AB的中点,DE⊥CE.试说明:CD=BC+AD
已知E是梯形ABCD的腰BC的中点,且AB+CD=AD,求证:AE垂直DE
梯形ABCD中 AD‖BC CE平分∠BCD 交AB于E 求证:CD=AD+BC
如图,在梯形ABCD中,AD//BC,E为AB的中点,CE恰好平分角BCD,求证,CD=AD+BC
在梯形ABCD中,AB∥CD,AD=BC,点M,N为AD,BC的中点,CE⊥AB于点E,若AE=CE,求证:CE=MN
梯形ABCD中,AD//BC,E是腰AB的中点,且DE⊥CE,说明DE,EC分别平分∠ADC和∠BCD
如图,梯形ABCD中,AD平行于BC,角BCD的平分线CE交AB的中点E,求证:CD=AD+BC
直角梯形ABCD中,∩ABC=90°,AD‖BC,E是CD的中点,∩AEC=3∩DAE,求证:BC=CE
已知,梯形ABCD中,AD//BC,E是CD的中点,且BE平分∠ABC,求证:AB=AD+BC
如图,在梯形ABCD中,AD‖BC,E为CD的中点,AE⊥BE,求证:AB=AD+BC