设x1>x2>5/2,令f(x)=y=x^2-5x-5
则f(x1)-f(x2)=(x1)^2-5(x1)-5-[(x2)^2-5(x2)-5]
=(x1)^2-(x2)^2-5(x1)+5(x2)
=(x1+x2)(x1-x2)-5(x1-x2)
=(x1+x2-5)(x1-x2)
∵x1>x2>5/2
∴x1+x2-5>0,x1-x2>0
∴(x1+x2-5)(x1-x2)>0,即f(x1)-f(x2)>0
∴f(x1)>f(x2)
而x1>x2,所以函数f(x)=y=x^2-5x-5在[5/2,+∞)上是增函数
它的减区间为(-∞.5/2)