一道椭圆问题过椭圆x^2/25+y^2/9=1的右焦点F作直线l,交椭圆于A,B两点,求线段AB终点P的轨迹方程

1个回答

  • 椭圆x^2/25+y^2/9=1

    a^2=25,b^2=9,c=4

    右焦点F(4,0)

    设P(x,y),则

    k(L)=(yA-yB)/(xA-xB)=y/(x-4)

    xA+xB=2x,yA+yB=2y

    x^2/25+y^2/9=1

    9x^2+25y^2=225

    9xA^2+25yA^2=225.(1)

    9xB^2+25yB^2=225.(2)

    (1)-(2),得

    9(xA+xB)*(xA-xB)+25(yA+yB)*(yA-yB)=0

    9(xA+xB)+25(yA+yB)*(yA-yB)/(xA-xB)=0

    9*2x+25*2y*y/(x-4)=0

    9x(x-4)+25y^2=0

    9(x^2-4x)+25y^2=0

    9(x-2)^2+25y^2=36

    线段AB终点P的轨迹方程是椭圆:

    (x-2)^2/4+y^2/(36/25)=1