PB⊥底面ABC,
∴平面PBC⊥平面ABC于BC,
∠BCA=90°,
∴AC⊥平面PBC,
∴平面PAC⊥平面PBC于PC,
PB=BC,E为PC的中点,
∴BE⊥AC,
∴BE⊥平面PAC.
2.BC=CA,M为AB的中点,
∴CM⊥AB,
连PM交BF于G,连EG.
易知AB=2√2,BM=√2,PM=√6,PA=2√3,PF=2√3/3,tanAPB=AB/BC=√2,cosAPB=1/√3,
由余弦定理,BF^2=4/3+4-8/3=8/3,BF=2√6/3,cosPBF=(4+8/3-8√2/3)/(8√6/3)=?
tanBPM=√2/2,cosBPM=√6/3,
sinBPM=1/√3,sinBGP=sin(∠PBF+∠BPM)=待续
由正弦定理,PG=PBsinPBF/sinBGP=(2/3)/(√6/3)=√6/3=