不变,原式=0
原式=(n-k)(2m-n-k)+(k-m)(2n-k-m)+(m-n)(2k-m-n)
=2mn-2mk-(n^2-k^2)+2nk-2mn-(k^2-m^2)+2mk-2nk-(m^2-n^2)
=k^2-n^2-k^2+m^2-m^2+n^2
=0
不变,原式=0
原式=(n-k)(2m-n-k)+(k-m)(2n-k-m)+(m-n)(2k-m-n)
=2mn-2mk-(n^2-k^2)+2nk-2mn-(k^2-m^2)+2mk-2nk-(m^2-n^2)
=k^2-n^2-k^2+m^2-m^2+n^2
=0