已知数列{an}是等比数列,其中a3=1,且a4,a5+1,a6成等差数列,数列{an/bn}的前n项和Sn=(n-1)

1个回答

  • (1)

    a4、a5+1、a6成等差数列,则2(a5+1)=a4+a6

    a4=a3q a5=a3q² a6=a3q³ a3=1代入,整理,得

    q³-2q²+q-2=0

    q²(q-2)+(q-2)=0

    (q²+1)(q-2)=0

    q²+1恒为正,要等式成立,只有q=2

    a1=a3/q²=1/2²=1/4

    an=(1/4)×2^(n-1)=2^(n-3)

    数列{an}的通项公式为an=2^(n-3).

    S1=(1-1)×2^(1-2) +1=1 a1/b1=1 b1=a1=1/4

    an/bn=Sn-Sn-1=(n-1)×2^(n-2)+1-(n-2)×2^(n-3)-1=n×2^(n-3)

    bn=an/[n×2^(n-3)]=2^(n-3)/[n×2^(n-3)]=1/n

    n=1时,b1=1/4,不满足.

    数列{bn}的通项公式为

    bn=1/4 n=1

    1/n n≥2

    [T3(n+3)-T(n+1)]-(T3n-Tn)

    =[1/4+1/2+1/3+...+1/(3n)+1/(3n+1)+1/(3n+2)+1/(3n+3)]-[1/4+1/2+1/3+...+1/n+1/(n+1)]

    -[1/4+1/2+1/3+...+1/(3n)]+(1+1/2+1/3+...+1/n)

    =1/(3n+1)+1/(3n+2)+1/(3n+3)-1/(n+1)

    >1/(3n+3)+1/(3n+3)+1/(3n+3)-1/(n+1)

    =1/(n+1)-1/(n+1)=0

    T3(n+3)-T(n+1)>T3n-Tn

    即随n增大,T3n-Tn单调递增,当n=1时,T3n-Tn取得最小值.

    T3-T1=(1/4+1/2+1/3)-(1/4)=1/2+1/3=5/6

    要不等式T3n-Tn≥t对于一切正整数n恒成立,只要t≤5/6.