A(n+1) = 3*2^n - An
A(n+1) - 2^(n+1) = 3*2^n - 2^(n+1) - An
= (3 - 2)*2^n - An
= -1 *(An - 2^n)
由此可知,{An - 2^n}是一个比值为 (-1)的等比数列.
所以有:
An - 2^n = (-1)^(n-1) * (A1 - 2^1) = 0
即 An = 2^n
A(n+1) = 3*2^n - An
A(n+1) - 2^(n+1) = 3*2^n - 2^(n+1) - An
= (3 - 2)*2^n - An
= -1 *(An - 2^n)
由此可知,{An - 2^n}是一个比值为 (-1)的等比数列.
所以有:
An - 2^n = (-1)^(n-1) * (A1 - 2^1) = 0
即 An = 2^n