求证:2(cos θ -sin θ )/(1+sinθ +cosθ)=tan(∏/4- θ /2)-tan(θ /2)

1个回答

  • 看到右边是关于θ/2的,就想着把左边也化为θ/2的.

    2(cos θ -sin θ )/(1+sinθ +cosθ)

    上面=2((cosθ/2)^2-(sinθ/2)^2-

    2(sinθ/2)(cosθ/2))

    下面=(cosθ/2)^2+(sinθ/2)^2+

    2(sinθ/2)(cosθ/2))

    +(cosθ/2)^2-(sinθ/2)^2,

    上下除以(cosθ/2)^2

    得(1-tan(θ/2)^2-2tan(θ /2))除以

    1+tan(θ/2)

    而tan(∏/4- θ /2)-tan(θ /2)=

    (1-tan(θ/2))/(1+tan(θ/2))+tan(θ/2)

    通分得(1-tan(θ/2)^2-2tan(θ /2))除以

    1+tan(θ/2)

    即左边=右边