f(x)=sin xcosα+sinαcos x,x∈R,0<α<π,如何化简?
1个回答
f(x)=sin xcosα+sinαcos x
=sin(x+α)
直接用sin(a+b)=sinacosb+cosasinb
【中学生数理化】团队为您答题,
相关问题
化简sin(2π−α)cos(π+α)cos(π−α)sin(3π−α)sin(−α−π)=−1sinα−1sinα.
化简[sin(π/2+α)*cos(π/2-α)]/cos(π+α)+[sin(π-α)*cos(π/2+α)]/sin
化简[sin(π/2-α)cos(π/2-α)]/cos(π+α)-[sin(π-α)cos(π/2-α)]/sin(π
化简(1)sin(α+π)cos(-α)sin(-α-π) (2)sin³(-α)cos(2π+α)tan(-
高中数学求化简.f(x)=[cos(α-π/2)sin(π/2+α)tan(-α+3π/2)]/cos(-π-α)
化简:(Ⅰ)sin(α−2π)cos(α+π)tan(α−99π)cos(π−α)sin(3π−α)sin(−α−π);
1.化简sin²α+cosαcos(π/3+α)-sin²(π/6-α)
sin{π-α}cos{2π-α}tan{-α+π}/sin{π+α}化简
π〈α〈2π且f(α)={√2-2 cosα}/{(1-sinα-cosα)(cosα/2+sinα/2)}请化简f(α
已知α、β∈(0,[π/2]),且α+β>π2,f(x)=(cosαsinβ)x+(cosβsinα)x.