证明下列恒等式(1)tan(x/2+π/4)+tan(x/2-π/4)=2tanx

1个回答

  • 1.tan(x/2+π/4)+tan(x/2-π/4)

    =[tan(x/2)+tan(π/4)]/[1-tan(x/2)tan(π/4)]+[tan(x/2)-tan(π/4)]/[1+tan(x/2)tan(π/4)]

    =[tan(x/2)+1]/[1-tan(x/2)]+[tan(x/2)-1]/[1+tan(x/2)]

    =[(tan(x/2)+1)^2-(tan(x/2)-1)^2]/[1-(tan(x/2))^2]

    =4tan(x/2)/[1-(tan(x/2))^2]

    =2tanx

    2.(1-2sinαcosα)/(cos²α-sin²α)

    (1-tanα)/(1+tanα)

    =[(cosa-sina)/cosa]/[(cosa+sina)/cosa]

    =(cosa-sina)/(cosa+sina)

    =(cosa-sina)²/(cos²a-sin²a)

    =(1-2sinαcosα)/(cos²α-sin²α)