如果f(x)在[a,无穷)上单减,在[a,无穷)上的积分:(积分号)f(x)dx收敛,证明x趋向于无穷时lim xf(x
1个回答
按照广义积分的充分必要条件 积分f(x)dx收敛lim xln(s)f(x) =M(有界)
所以lim xf(x) =0
相关问题
广义积分收敛问题!若f(x)在(-无穷,+无穷)上连续,且∫f(x)dx(-无穷,+无穷)收敛证明:∫f(x-1/x)d
广义积分如果f(x)在1到正无穷上的积分收敛,且当x趋近于正无穷时,f(x)的极限为A,证明A=0
证明 若f 在 a到正无穷 上一致连续 且∫(a到正无穷) f(x)dx收敛,则 lim (x趋于正无穷)f(x)=0
跪谢!实变函数:连续函数f(x)在(a,无穷)上广义积分收敛,f(x)是否在(a,无穷))Lebesgue 可积?
函数f(x)在【0,1】上连续可微,证明:lim n->无穷 n积分符号(0——1) x^n f(x)dx=f(1)
证明:若lim(x->+无穷)f(x)=0,且g(x)在(a,+无穷)有界,则lim(x->+无穷)f(x)g(x)=0
设y=f(x)在[a,正无穷]上连续,且x趋于正无穷时,f(x)存在,证明:f在[a,正无穷]上有界
设f(x)在[1,正无穷)上非负递增,并且积分[f(x)-x]/x从1到正无穷对x积分,证明极限f(x)/x=1(x趋于
f(x)无穷次变号,可不可以运用用比较判别法判断无穷积分收敛
设f(x)在R上连续,且lim(x→无穷)f(x) = +无穷,证明f(x)在R上取到最小值.