a (n+1 )=a(n)*2-a(n)+1
得a(n+1)-1=an(an-1)
1/[a(n+1)-1]=1/(an-1)-1/an
得1/an=1/(an-1)-1/[a(n+1)-1]
所以m=1/a1+1/a2+1/a3+.+1/a2011
=1/(a1-1)-1/(a2-1)+1/(a2-1)-1/(a3-1)+……+1/(a2011-1)-1/(a2012-1)
=1/(a1-1)-1/(a2012-1)
=2-1/(2012-1)
由于从a3开始an就大于2,所以a2012-1>1故1/(a2012-1)