已知a2+4a+1=0,且a4+ma2+13a3+ma2+3a=5,则m=______.

3个回答

  • 解题思路:由a2+4a+1=0,得a2=-4a-1,代入所求的式子化简即可.

    ∵a2+4a+1=0,∴a2=-4a-1,

    a4+ma2+1

    3a3+ma2+3a=

    (−4a−1)2+ma2+1

    3a(−4a−1)+ma2+3a

    =

    (16+m)a2+8a+2

    (m−12)a2

    =

    (16+m)a2+8a+2

    (m−12)(−4a−1)

    =

    (16+m)(−4a−1)+8a+2

    (m−12)(−4a−1)=5,

    ∴(16+m)(-4a-1)+8a+2=5(m-12)(-4a-1),

    原式可化为(16+m)(-4a-1)-5(m-12)(-4a-1)=-8a-2,

    即[(16+m)-5(m-12)](-4a-1)=-8a-2,

    ∵a≠0,

    ∴(16+m)-5(m-12)=2,

    解得m=[37/2].

    故答案为[37/2].

    点评:

    本题考点: 分式的等式证明.

    考点点评: 解题关键是两次用到了整体代入的思想,它在解题中起到了降幂,从而化难为易的作用.