解题思路:由a2+4a+1=0,得a2=-4a-1,代入所求的式子化简即可.
∵a2+4a+1=0,∴a2=-4a-1,
a4+ma2+1
3a3+ma2+3a=
(−4a−1)2+ma2+1
3a(−4a−1)+ma2+3a
=
(16+m)a2+8a+2
(m−12)a2
=
(16+m)a2+8a+2
(m−12)(−4a−1)
=
(16+m)(−4a−1)+8a+2
(m−12)(−4a−1)=5,
∴(16+m)(-4a-1)+8a+2=5(m-12)(-4a-1),
原式可化为(16+m)(-4a-1)-5(m-12)(-4a-1)=-8a-2,
即[(16+m)-5(m-12)](-4a-1)=-8a-2,
∵a≠0,
∴(16+m)-5(m-12)=2,
解得m=[37/2].
故答案为[37/2].
点评:
本题考点: 分式的等式证明.
考点点评: 解题关键是两次用到了整体代入的思想,它在解题中起到了降幂,从而化难为易的作用.