(1+x)/[ (x+2)(x-1)]÷[x-2+3/(x+2)]
=(1+x)/[ (x+2)(x-1)]÷[(x²-4+3)/(x+2)]
=(1+x)/[ (x+2)(x-1)]÷[(x²-1)/(x+2)]
=(1+x)/[(x+2)(x-1`)]×(x+2)/[(x+1)(x-1)]
=1/(x-1)²
∵x=1/2
∴原式=1/(1/2-1)²=4
(1+x)/[ (x+2)(x-1)]÷[x-2+3/(x+2)]
=(1+x)/[ (x+2)(x-1)]÷[(x²-4+3)/(x+2)]
=(1+x)/[ (x+2)(x-1)]÷[(x²-1)/(x+2)]
=(1+x)/[(x+2)(x-1`)]×(x+2)/[(x+1)(x-1)]
=1/(x-1)²
∵x=1/2
∴原式=1/(1/2-1)²=4