解;
f(x)=sinx+sinxcosπ/3+cosxsinπ/3
=sinx+1/2sinx+√3/2cosx
=3/2sinx+√3/2cosx
=√3sin(x+π/6)
当x+π/6=-π/2+2kπ
即x=-2π/3+2kπ时
f(x)取得最小值为:-√3
∴f(x)取得最小值的x的集合为:{x/x=2kπ-2π/3,k∈z}
解;
f(x)=sinx+sinxcosπ/3+cosxsinπ/3
=sinx+1/2sinx+√3/2cosx
=3/2sinx+√3/2cosx
=√3sin(x+π/6)
当x+π/6=-π/2+2kπ
即x=-2π/3+2kπ时
f(x)取得最小值为:-√3
∴f(x)取得最小值的x的集合为:{x/x=2kπ-2π/3,k∈z}