又一个二重积分,奇偶性问题f(x)为奇函数,问∫dx∫xf(u)du的奇偶性, 都为变限积分x上下限(y a) u上下限

1个回答

  • 证明:

    设 F(x) = [x,a]∫f(u)du ;[x,a]表示积分限下限为a,上限为x

    F(y) = [y,a]∫dx*[x,a]∫xf(u)du = [y,a]∫x*F(x)*dx

    首先证明F(x)的奇偶性

    F(-x) = [-x,a]∫f(u)du

    设 u =-v,则上式变为:

    F(-x) = [x,-a]∫f(-v)d(-v),由于f(v)为奇函数,f(-v) = -f(v),因此

    F(-x) = [x,-a]∫f(v)dv

    = [x,a]∫f(v)dv + [a,-a]∫f(v)dv

    = F(x) + 0 =F(x)

    即:F(x) 为偶函数

    同样:

    F(-y) = [-y,a]∫x*F(x)*dx,令 x=-z,则有:

    F(-y) = [y,-a]∫(-z)F(-z)*d(-z)

    = [y,-a]∫zF(z)dz

    = [y,a]∫zF(z)dz + [a,-a]∫zF(z)dz

    = F(y) + 0 =F(y)

    因此F(y)为偶函数,即[y,a]∫dx*[x,a]∫xf(u)du 为偶函数