设f(x)=√(x²+4)+√((8-x)²+16)则
f'(x)=x/√(x^2+4)+(x-8)/√[(x-8)^2+16],令f'(x)=0,得x/√(x^2+4)=(8-x)/√[(x-8)^2+16]
两边平方得x^2/(x^2+4)=(8-x)^2/[(x-8)^2+16],由合分比定理得x^2/4=(8-x)^2/16,即
(2x)^2=(8-x)^2
得2x=8-x或2x=x-8
解得x=8/3(x=-8为增根)
故最小值为f(8/3)=10
设f(x)=√(x²+4)+√((8-x)²+16)则
f'(x)=x/√(x^2+4)+(x-8)/√[(x-8)^2+16],令f'(x)=0,得x/√(x^2+4)=(8-x)/√[(x-8)^2+16]
两边平方得x^2/(x^2+4)=(8-x)^2/[(x-8)^2+16],由合分比定理得x^2/4=(8-x)^2/16,即
(2x)^2=(8-x)^2
得2x=8-x或2x=x-8
解得x=8/3(x=-8为增根)
故最小值为f(8/3)=10