f(x)=(x-a)(x-b)
f'(x)=x-b+x-a=2x-a-b
f(0)+f'(0)=ab-(a+b)=0
那么a+b=ab
1/a+1/b=1
∵a>0,b>0
∴a+2b
=(a+2b)(1/a+1/b)
=1+2+a/b+2b/a
=3+(a/b+2b/a)
≥3+2√(a/b*2b /a)=3+2√2
即a+2b的最小值为3+2√2
f(x)=(x-a)(x-b)
f'(x)=x-b+x-a=2x-a-b
f(0)+f'(0)=ab-(a+b)=0
那么a+b=ab
1/a+1/b=1
∵a>0,b>0
∴a+2b
=(a+2b)(1/a+1/b)
=1+2+a/b+2b/a
=3+(a/b+2b/a)
≥3+2√(a/b*2b /a)=3+2√2
即a+2b的最小值为3+2√2