设a>b
f(a) / f(b) = f(a-b)
∵a-b>0∴f(a-b)>1即f(a) / f(b)>1
又f(x)>0恒成立
∴ f(a) >f(b)
∴f(x)是增函数
f(x)*f(y) =f(x+y-y)*f(y) = f(x+y)/f(y) *f(y) =f(x+y)
∴f(x)f(x+1) =f(2x+1)
f(2...
设a>b
f(a) / f(b) = f(a-b)
∵a-b>0∴f(a-b)>1即f(a) / f(b)>1
又f(x)>0恒成立
∴ f(a) >f(b)
∴f(x)是增函数
f(x)*f(y) =f(x+y-y)*f(y) = f(x+y)/f(y) *f(y) =f(x+y)
∴f(x)f(x+1) =f(2x+1)
f(2...