解题思路:假设每头牛每天吃青草1份,先求出青草的增加的速度:(20×10-15×10)÷(20-10)=5(份);然后求出草场原有的草的份数:20×10-5×20=100(份);那么25头牛每天吃青草25份,青草每天增加5份,可以看作每天有(25-5)20头牛在吃草,草场原有的100份的草,可吃:100÷20=5(天).
假设每头牛每天吃青草1份,
青草增加的速度:(20×10-15×10)÷(20-10),
=50÷5,
=5(份);
原有的草的份数:20×10-5×20,
=200-100,
=100(份);
可供25头牛吃:100÷(25-5),
=100÷20,
=5(天);
答:这个草场的草可供25头牛吃5天.
故答案为:5.
点评:
本题考点: 牛吃草问题.
考点点评: 本题考查了牛吃草的问题,关键的是求出青草的每天增加的速度(份数)和草场原有的草的份数.