设1>x1>x2>0
f(x1)-f(x2)=x1+(1/x1)-[x2+(1/x2)]=(x1^2+1)/x1-(x2^+1)/x2
=[x2(x1^2+1)-x1(x2^+1)]/x1x2=(x2x1^2+x2-x1x2^2-x1)/x1x2
=[x1x2(x1-x2)-(x1-x2)]/x1x2=[(x1x2-1)(x1-x2)]/x1x2
因为1>x1>x2>0,所以x1-x2>0,1>x1x2>0,所以x1x2-1
设1>x1>x2>0
f(x1)-f(x2)=x1+(1/x1)-[x2+(1/x2)]=(x1^2+1)/x1-(x2^+1)/x2
=[x2(x1^2+1)-x1(x2^+1)]/x1x2=(x2x1^2+x2-x1x2^2-x1)/x1x2
=[x1x2(x1-x2)-(x1-x2)]/x1x2=[(x1x2-1)(x1-x2)]/x1x2
因为1>x1>x2>0,所以x1-x2>0,1>x1x2>0,所以x1x2-1