ax^3+bx^2+cx+d能被x^2+h^2整除
则有
ax^3+bx^2+cx+d
=(x^2+h^2)*(mx+n)
=mx^3+nx^2+h^2mx+h^2*n
所以有a=m,b=n,c=h^2m,d=h^2n
即c=h^2*a
d=h^2*b
即ad=bc
ax^3+bx^2+cx+d能被x^2+h^2整除
则有
ax^3+bx^2+cx+d
=(x^2+h^2)*(mx+n)
=mx^3+nx^2+h^2mx+h^2*n
所以有a=m,b=n,c=h^2m,d=h^2n
即c=h^2*a
d=h^2*b
即ad=bc