设a^x=b^y=c^z= K 取对数得:x=log a K y=log b K z=log c K
所以1/x+1/z = lga/lgK + lgc/lck 2/y= 2lgb/lgK
所以lga + lgc = 2lgb 所以ac=b^2 即a,b,c成等比数列
设a^x=b^y=c^z= K 取对数得:x=log a K y=log b K z=log c K
所以1/x+1/z = lga/lgK + lgc/lck 2/y= 2lgb/lgK
所以lga + lgc = 2lgb 所以ac=b^2 即a,b,c成等比数列