必修5数学【等比数列前n项和问题】

1个回答

  • 思路:分奇偶项讨论,然后分别相加求和.

    a(2n+1)=[3+(-1)^(2n)]a(2n)/2=2a(2n)

    a(2n+2)=a(2n+1+1)=[3+(-1)^(2n+1)]a(2n+1)/2=a(2n+1)=2a(2n)

    {a(2n)}是首项为a(2)=3,公比为2的等比数列.

    a(2n)=3*2^(n-1)

    a(2n+1)=2a(2n)=3*2^n

    a(1)+a(2)+...+a(100)=

    =a(1)+a(3)+a(5)+...+a(99) + a(2)+a(4)+...+a(100)

    =2+3*2+3*2^2+...+3*2^(49) + 3 + 3*2 + ...+ 3*2^(49)

    =-1+3+3*2+3*2^2+...+3*2^(49) + 3+3*2+...+3*2^(49)

    =-1 +2[3+3*2+3*2^2+...+3*2^(49)]

    =-1+2*3[1+2+2^2+...+2^(49)]

    =-1+2*3[2^(50)-1]

    =3*2^(51) - 7