f(x)=√3sin2x+2sin(x-π/4)sin(x+π/4)=√3sin2x+(sinx)^2-(cosx)^2=√3sin2x-cos2x=zsin(2x-π/6)
所以最小正周期为π对称轴为2x-π/6=kπ+π/2或2x-π/6=kπ-π/2
f(x)=√3sin2x+2sin(x-π/4)sin(x+π/4)=√3sin2x+(sinx)^2-(cosx)^2=√3sin2x-cos2x=zsin(2x-π/6)
所以最小正周期为π对称轴为2x-π/6=kπ+π/2或2x-π/6=kπ-π/2