(1)y=x/(x²+9)
=1/(x+9/x)
≤1/[2√(x·9/x)]
=1/6.
∴x=9/x→x=3时,
y|max=1/6.
(2)y=x/(x^4+9)
→1/y=x³+9/x
→1/y=x³+3/x+3/x+3/x
≥4·(x³·3/x·3/x·3/x)^(1/4)
=4×3^(3/4)
∴y≤1/[4×3^(3/4)],
即:y|max=1/[4×3^(3/4)].
此时,x³=3/x,x=3^(1/4).
(1)y=x/(x²+9)
=1/(x+9/x)
≤1/[2√(x·9/x)]
=1/6.
∴x=9/x→x=3时,
y|max=1/6.
(2)y=x/(x^4+9)
→1/y=x³+9/x
→1/y=x³+3/x+3/x+3/x
≥4·(x³·3/x·3/x·3/x)^(1/4)
=4×3^(3/4)
∴y≤1/[4×3^(3/4)],
即:y|max=1/[4×3^(3/4)].
此时,x³=3/x,x=3^(1/4).