椭圆C:x²/a²+y²/b²=1(a>b>0)的离心率为2√5/5,且A(0,1)是椭圆C的顶点.
(1)求椭圆C的方程;
(2)过点A作斜率为1的直线l,在直线l上求一点M,使得以椭圆C的焦点为焦点,且
过点M的双曲线E的实轴最长,并求此双曲线E的方程.
解:(1)A(0, 1)是椭圆的顶点,故b=1
由e=c/a=2√5/5,得e²=c²/a²=(a²-b²)/a²=(a²-1)/a²=2/5
于是有 5(a²-1)=2a²,故a²=5/3,故椭圆方程为 x²/(5/3)+y²=1,即 3x²/5+y²=1.
半焦距c=[√(5/3)](2√5/5)=2/√3=2√3/3.
(2) 设双曲线E的方程为 x²/a²-y²/b²=1.(1)
已知c=2(√3)/3, F₁(-2√3/3, 0), F₂(2√3/3, 0)
直线L的方程: y=x+1.(2)
M在L上,为使双曲线E的实轴最长,M的位置应使:
│MF₂│-│MF₁│获得最大值,显然,当F₁,M, F₂三点都在x轴上时该值最大,
此时M的坐标为(-1,0), │MF₂│-│MF₁│=(2√3/3+1)-(-1+2√3/3)=2=2a
故最大的a=1,于是得b²=c²-a²=[2(√3)/3]²-1=4/3-1=1/3.这时E的方程为:
x²-3y²=1.