三角形ABC的三个内角A,B,C成等差数列
则A+C=2B
因为A+B+C=180°
3B=180°
所以B=60°
A+C=120°
(sinA)^2+(sinC)^2
=(sinA+sinC)^2-2sinAsinC
={2sin[(A+C)/2]cos[(A-C)/2]}^2+cos(A+C)-cos(A-C)
=3{cos[(A-C)/2]}^2-1/2-cos(A-C)
=3[1+cos(A-C)]/2-1/2-cos(A-C)
=1+[cos(A-C)]/2
-120°
三角形ABC的三个内角A,B,C成等差数列
则A+C=2B
因为A+B+C=180°
3B=180°
所以B=60°
A+C=120°
(sinA)^2+(sinC)^2
=(sinA+sinC)^2-2sinAsinC
={2sin[(A+C)/2]cos[(A-C)/2]}^2+cos(A+C)-cos(A-C)
=3{cos[(A-C)/2]}^2-1/2-cos(A-C)
=3[1+cos(A-C)]/2-1/2-cos(A-C)
=1+[cos(A-C)]/2
-120°