在△ABC和△EBD中,
AB = EB ,∠ABC = ∠DBC+∠DBA = ∠EBA+∠DBA = ∠EBD ,BC = BD ,
所以,△ABC ≌ △EBD ,可得:AC = ED ,则有:AF = AC = DE .
同理可证:△ABC ≌ △FDC ,可得:AB = FD ,则有:AE = AB = DF .
由 AF = DE ,AE = DF ,可得:四边形AEDF是平行四边形.
在△ABC和△EBD中,
AB = EB ,∠ABC = ∠DBC+∠DBA = ∠EBA+∠DBA = ∠EBD ,BC = BD ,
所以,△ABC ≌ △EBD ,可得:AC = ED ,则有:AF = AC = DE .
同理可证:△ABC ≌ △FDC ,可得:AB = FD ,则有:AE = AB = DF .
由 AF = DE ,AE = DF ,可得:四边形AEDF是平行四边形.