OMN是等腰直角三角形.
理由如下:如图,连接BD,
∵△CDE顺时针旋转90°,
∴∠ACE=∠ACB=90°,
在△BCD和△ACE中,BC=AC∠ACE=∠ACB=90°CD=CE,
∴△BCD≌△ACE(SAS),
∴BD=AE,∠CBD=∠CAE,
∵O、M、N分别为AB、AD、BE中点,
∴OM∥BD且OM=12BD,ON∥AE且ON=12AE,
∴OM=ON,∠ABD=∠AOM,∠BAE=∠BON,
∴∠MON=180°-(∠AOM+∠BON)=180°-(∠ABD+∠BAE)=180°-(∠ABD+∠CBD+∠BAC)=180°-(∠ABC+∠BAC),
∵∠ACB=90°,
∴∠ABC+∠BAC=180°-∠ACB=180°-90°=90°,
∴∠MON=180°-90°=90°,
∴△OMN是等腰直角三角形;
(2)△OMN是等腰直角三角形的结论仍成立.
如图,连接BD、AE,证明方法与(1)相同.