答:
先计算不定积分:
∫ x³/(1+x²) dx
=(1/2) ∫ (x²+1-1)/(1+x²) d(x²+1)
=(1/2) ∫ 1-1/(x²+1) d(x²+1)
=(1/2)x² -(1/2)*ln(x²+1)+C
积分区间[0,√3]代入得:
定积分=(1/2)*[ 3-ln(3+1) -(0-0) ]
=3/2 -(1/2)*ln2²
=3/2 -ln2
答:
先计算不定积分:
∫ x³/(1+x²) dx
=(1/2) ∫ (x²+1-1)/(1+x²) d(x²+1)
=(1/2) ∫ 1-1/(x²+1) d(x²+1)
=(1/2)x² -(1/2)*ln(x²+1)+C
积分区间[0,√3]代入得:
定积分=(1/2)*[ 3-ln(3+1) -(0-0) ]
=3/2 -(1/2)*ln2²
=3/2 -ln2